Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tumour necrosis factor-alpha inhibits adipogenesis via a beta-catenin/TCF4(TCF7L2)-dependent pathway.

Tumour necrosis factor-alpha (TNF-alpha), a proinflammatory cytokine, is a potent negative regulator of adipocyte differentiation. However, the mechanism of TNF-alpha-mediated antiadipogenesis remains incompletely understood. In this study, we first confirm that TNF-alpha inhibits adipogenesis of 3T3-L1 preadipocytes by preventing the early induction of the adipogenic transcription factors peroxisome proliferator-activated receptor-gamma (PPARgamma) and CCAAT/enhancer binding protein-alpha (C/EBPalpha). This suppression coincides with enhanced expression of several reported mediators of antiadipogenesis that are also targets of the Wnt/beta-catenin/T-cell factor 4 (TCF4) pathway. Indeed, we found that TNF-alpha enhanced TCF4-dependent transcriptional activity during early antiadipogenesis, and promoted the stabilisation of beta-catenin throughout antiadipogenesis. We analysed the effect of TNF-alpha on adipogenesis in 3T3-L1 cells in which beta-catenin/TCF signalling was impaired, either via stable knockdown of beta-catenin, or by overexpression of dominant-negative TCF4 (dnTCF4). The knockdown of beta-catenin enhanced the adipogenic potential of 3T3-L1 preadipocytes and attenuated TNF-alpha-induced antiadipogenesis. However, beta-catenin knockdown also promoted TNF-alpha-induced apoptosis in these cells. In contrast, overexpression of dnTCF4 prevented TNF-alpha-induced antiadipogenesis but showed no apparent effect on cell survival. Finally, we show that TNF-alpha-induced antiadipogenesis and stabilisation of beta-catenin requires a functional death domain of TNF-alpha receptor 1 (TNFR1). Taken together these data suggest that TNFR1-mediated death domain signals can inhibit adipogenesis via a beta-catenin/TCF4-dependent pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app