JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Effects of spatial attention and salience cues on chromatic and achromatic motion processing.

Vision Research 2007 June
While several previous psychophysical and neurophysiological studies have demonstrated chromatic (red/green) input to motion processing, the nature of this input is still a matter of debate. In particular, there exists controversy as to whether chromatic motion processing is mediated by low-level motion mechanisms versus higher-level, attention- or salience-based mechanisms. To address the role of attention, in Experiment 1, we asked whether spatial attention exerts larger effects on chromatic (red/green), as compared to achromatic, motion. To this end, we employed a motion after-effect (MAE) paradigm, and measured attention effects by comparing MAE duration between conditions where subjects attended to the adapting moving grating stimulus versus ignored that stimulus because they were required to perform an attentionally demanding vowel detection task at the center of gaze. The results from these experiments revealed equal effects of spatial attention on chromatic and achromatic motion processing, which were essentially constant (roughly 1.4-fold) across a wide range of stimulus contrasts (3.2-25% cone contrast). These findings suggest that chromatic motion processing is not affected disproportionally by higher-level spatial attention mechanisms. To address the role of salience, in Experiment 2, we investigated the effects of bottom-up salience cues on the strength of chromatic and achromatic motion, as measured with the MAE. Salience was manipulated by varying the relationship between the moving gratings and the background color. The results of these experiments revealed small and insignificant effects of salience cues on chromatic and achromatic motion processing. These findings suggest that mechanisms sensitive to feature salience do not influence low-level chromatic motion mechanisms mediating the motion after-effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app