JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Rapid inactivation and apoptosis of osteoclasts in the maternal skeleton during the bone remodeling reversal at the end of lactation.

There is a rapid reversal in maternal skeletal metabolism and bone remodeling from accelerated bone resorption during lactation to skeletal rebuilding after lactation. The purpose was to determine the changes that occur in maternal osteoclasts during the transition from lactation to postlactation. Skeletal samples were taken from female rats on days 10 and 19 of lactation and 1 and 7 days after lactation. The pups were weaned on day 20. There was a rapid change in the osteoclast population after weaning, resulting in less resorption surface. Osteoclasts detached from bone surfaces, lost their ruffled borders, and became fragmented with immunocytochemical evidence of apoptosis within 24 hr after lactation. Concomitant with the rapid regression in the osteoclast population was an over fivefold increase in maternal calcitonin (CT) levels at 24 hr after weaning. Serum calcium and estrogen (E2) increased, but prolactin (PRL) and PTH decreased after weaning. The hormone changes, particularly that of CT, are consistent with the rapid regression of the osteoclast population at the end of lactation. These changes are similar to a reversal phase of a bone remodeling cycle where bone formation commences when resorption ceases on bone surfaces and suggests that the fate of osteoclasts during bone remodeling is programmed cell death. These results also suggest that bone remodeling is well synchronized prior to, during, and after lactation to accommodate the mineral requirements of the offspring as well as the mother.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app