Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Tetrahydrofuran activates fluorescence resonant energy transfer from a cationic conjugated polyelectrolyte to fluorescein-labeled DNA in aqueous media.

A cationic water-soluble conjugated polyelectrolyte, poly[9,9-bis(6''-(N,N,N-trimethylammonium)hexyl)fluorene-co-alt-2,5-bis(6'-(N,N,N-trimethylammonium)hexyloxyphenylene) tetrabromide], was synthesized. Fluorescence resonant energy transfer (FRET) experiments between the polymer and fluorescein-labeled single-stranded DNA (ssDNA-Fl) were conducted in aqueous buffer and THF/buffer mixtures. Weak fluorescence emission in aqueous buffer was observed upon excitation of the polymer, whereas addition of THF turned on the fluorescence. Fluorescence self-quenching of ssDNA-Fl in the ssDNA-Fl/polymer complexes as well as electron transfer from the polymer to fluorescein may account for the low fluorescence emission in buffer. The improved sensitization of fluorescence by the polymer observed in THF/buffer could be attributed to the weaker binding between the polymer and ssDNA-Fl and a decrease in dielectric constant of the solvent mixture, which disfavors electron transfer. THF-assisted signal sensitization was also observed for the polymer and fluorescein-labeled double-stranded DNA (dsDNA-Fl). These results indicate that the use of cosolvent provides a strategy to improve the detection sensitivity for biosensors based on the optical amplification provided by conjugated polymers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app