JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Phosphodiesterase 1 upregulation in pulmonary arterial hypertension: target for reverse-remodeling therapy.

Circulation 2007 May 2
BACKGROUND: Pulmonary arterial hypertension (PAH) is a life-threatening disease, characterized by vascular smooth muscle cell hyperproliferation. The calcium/calmodulin-dependent phosphodiesterase 1 (PDE1) may play a major role in vascular smooth muscle cell proliferation.

METHODS AND RESULTS: We investigated the expression of PDE1 in explanted lungs from idiopathic PAH patients and animal models of PAH and undertook therapeutic intervention studies in the animal models. Strong upregulation of PDE1C in pulmonary arterial vessels in the idiopathic PAH lungs compared with healthy donor lungs was noted on the mRNA level by laser-assisted vessel microdissection and on the protein level by immunohistochemistry. In chronically hypoxic mouse lungs and lungs from monocrotaline-injected rats, PDE1A upregulation was detected in the structurally remodeled arterial muscular layer. Long-term infusion of the PDE1 inhibitor 8-methoxymethyl 3-isobutyl-1-methylxanthine in hypoxic mice and monocrotaline-injected rats with fully established pulmonary hypertension reversed the pulmonary artery pressure elevation, structural remodeling of the lung vasculature (nonmuscularized versus partially muscularized versus fully muscularized small pulmonary arteries), and right heart hypertrophy.

CONCLUSIONS: Strong upregulation of the PDE1 family in pulmonary artery smooth muscle cells is noted in human idiopathic PAH lungs and lungs from animal models of PAH. Inhibition of PDE1 reverses structural lung vascular remodeling and right heart hypertrophy in 2 animal models. The PDE1 family may thus offer a new target for therapeutic intervention in pulmonary hypertension.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app