COMPARATIVE STUDY
JOURNAL ARTICLE

Decreased age-related cardiac dysfunction, myocardial nitrative stress, inflammatory gene expression, and apoptosis in mice lacking fatty acid amide hydrolase

Sándor Bátkai, Mohanraj Rajesh, Partha Mukhopadhyay, György Haskó, Lucas Liaudet, Benjamin F Cravatt, Anna Csiszár, Zoltan Ungvári, Pál Pacher
American Journal of Physiology. Heart and Circulatory Physiology 2007, 293 (2): H909-18
17434980
Recent studies have uncovered important cross talk between inflammation, generation of reactive oxygen and nitrogen species, and lipid metabolism in the pathogenesis of cardiovascular aging. Inhibition of the endocannabinoid anandamide metabolizing enzyme, the fatty acid amide hydrolase (FAAH), is emerging as a promising novel approach for the treatment of various inflammatory disorders. In this study, we have investigated the age-associated decline of cardiac function and changes in inflammatory gene expression, nitrative stress, and apoptosis in FAAH knockout (FAAH(-/-)) mice and their wild-type (FAAH(+/+)) littermates. Additionally, we have explored the effects of anandamide on TNF-alpha-induced ICAM-1 and VCAM-1 expression and monocyte-endothelial adhesion in human coronary artery endothelial cells (HCAECs). There was no difference in the cardiac function (measured by the pressure-volume conductance catheter system) between 2- to 3-mo-old (young) FAAH(-/-) and FAAH(+/+) mice. In contrast, the aging-associated decline in cardiac function and increased myocardial gene expression of TNF-alpha, gp91phox, matrix metalloproteinase (MMP)-2, MMP-9, caspase-3 and caspase-9, myocardial inducible nitric oxide synthase protein expression, nitrotyrosine formation, poly (ADP-ribose)polymerase cleavage and caspase-3/9 activity, observed in 28- to 31-mo-old (aging) FAAH(+/+) mice, were largely attenuated in knockouts. There was no difference in the myocardial cannabinoid CB(1) and CB(2) receptor gene expression between young and aging FAAH(-/-) and FAAH(+/+) mice. Anandamide dose dependently attenuated the TNF-alpha-induced ICAM-1 and VCAM-1 expression, NF-kappaB activation in HCAECs, and the adhesion of monocytes to HCAECs in a CB(1)- and CB(2)-dependent manner. These findings suggest that pharmacological inhibition of FAAH may represent a novel protective strategy against chronic inflammation, oxidative/nitrative stress, and apoptosis associated with cardiovascular aging and atherosclerosis.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
17434980
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"