Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Coenzyme Q10 prevents high glucose-induced oxidative stress in human umbilical vein endothelial cells.

Hyperglycemia-induced oxidative stress plays a crucial role in the pathogenesis of vascular complications in diabetes. Although some clinical evidences suggest the use of an antioxidant reagent coenzyme Q10 in diabetes with hypertension, the direct effect of coenzyme Q10 on the endothelial functions has not been examined. In the present study, we therefore investigated the protective effect of coenzyme Q10 against high glucose-induced oxidative stress in human umbilical vein endothelial cells (HUVEC). HUVEC exposed to high glucose (30 mM) exhibited abnormal properties, including the morphological and biochemical features of apoptosis, overproduction of reactive oxygen species, activation of protein kinase Cbeta2, and increase in endothelial nitric oxide synthase expression. Treatment with coenzyme Q10 strongly inhibited these changes in HUVEC under high glucose condition. In addition, coenzyme Q10 inhibited high glucose-induced cleavage of poly(ADP-ribose) polymerase, an endogenous caspase-3 substrate. These results suggest that coenzyme Q10 prevents reactive oxygen species-induced apoptosis through inhibition of the mitochondria-dependent caspase-3 pathway. Moreover, consistent with previous reports, high glucose caused upregulation of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in HUVEC, and promoted the adhesion of U937 monocytic cells. Coenzyme Q10 displayed potent inhibitory effects against these endothelial abnormalities. Thus, we provide the first evidence that coenzyme Q10 has a beneficial effect in protecting against the endothelial dysfunction by high glucose-induced oxidative stress in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app