JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

S-phase checkpoints regulate Apo2 ligand/TRAIL and CPT-11-induced apoptosis of prostate cancer cells.

As S-phase checkpoints play critical roles in maintaining genomic integrity and replicating the human genome correctly, understanding the molecular mechanism by which they regulate the therapeutic response is of great interest. Previously, we reported that the cytotoxic effect of a zinc-bound form of Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL), which is currently evaluated in clinical trials, in combination with low-dose CPT-11, induces apoptosis of C4-2 human prostate cancer cells and tissues. Here, we show that apoptosis, induced synergistically by this combination treatment, was associated with accumulation of cells in early S phase, indicated by cell cycle analyses, increased proliferating cell nuclear antigen, and Chk2-Thr(68) phosphorylation in tumors xenografted in mice. The combination treatment induced an S-phase checkpoint response through activation of Chk2 and Chk1 by the ataxia telangiectasia mutated and ataxia telangiectasia mutated and Rad3 related kinases, leading to phosphorylation and decreased Cdc25A levels. Cdc25A-dependent regulation of cyclin-dependent kinase 2 (Cdk2) and changes in association of p21(WAF1/CIP1) and hSpy1 with Cdk2 resulted in inhibition of Cdk2-associated kinase activity. Knockdown of ataxia telangiectasia mutated/Chk2 and ataxia telangiectasia mutated and Rad3 related/Chk1 by small inhibitory RNAs abrogated the S-phase checkpoint and accelerated apoptosis, resulting in caspase-3 activation and poly(ADP-ribose) polymerase 1 cleavage following combination treatment. Thus, Apo2L/TRAIL + CPT-11 treatment-induced apoptosis is regulated through an S-phase checkpoint controlled by the Chk2-Cdc25A and Chk1-Cdc25A pathways and inhibition of Cdk2-associated kinase activity. Low-dose CPT-11 and aphidicolin increased the proportion of S-phase cells and sensitized cells to Apo2L/TRAIL, by inducing phosphatidylserine externalization, caspase activation, and poly(ADP-ribose) polymerase 1 cleavage. Combinations with S-phase arrest-inducing chemotherapeutic drugs may represent promising avenues for clinical development of Apo2L/TRAIL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app