JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

H2S, endoplasmic reticulum stress, and apoptosis of insulin-secreting beta cells.

Cystathionine gamma-lyase (CSE) is a key enzyme in the trans-sulfuration pathway, which uses L-cysteine to produce hydrogen sulfide (H2S). Functional changes of pancreatic beta cells induced by endogenous H2S have been reported, but the effect of the CSE/H2S system on pancreatic beta cell survival has not been known. In this study, we demonstrate that H2Sat physiologically relevant concentrations induced apoptosis of INS-1E cells, an insulin-secreting beta cell line. Transfection of INS-1E cells with a recombinant defective adenovirus containing the CSE gene (Ad-CSE) resulted in a significant increase in CSE expression and H2S production. Ad-CSE transfection also stimulated apoptosis. The other two end products of CSE-catalyzed enzymatic reaction, ammonium and pyruvate, had no effects on INS-1E cell apoptosis, indicating that overexpression of CSE may stimulate INS-1E cell apoptosis via increased endogenous production of H2S. Both exogenous H2S (100 microM) and Ad-CSE transfection inhibited ERK1/2 but activated p38 MAPK. Interestingly, BiP and CHOP, two indicators of endoplasmic reticulum (ER) stress, were up-regulated in H2S-and CSE-mediated apoptosis in INS-1E cells. After suppressing CHOP mRNA expression, H2S-induced apoptosis of INS-1E cells was significantly decreased. Inhibition of p38 MAPK, but not of ERK1/2, inhibited the expression of BiP and CHOP and decreased H2S-stimulated apoptosis, suggesting that p38 MAPK activation functions upstream of ER stress to initiate H2S-induced apoptosis. It is concluded that H2S induces apoptosis of insulin-secreting beta cells by enhancing ER stress via p38 MAPK activation. Our findings may help unmask a novel role of CSE/H2S system in regulating pancreatic functions under physiological condition and in diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app