Add like
Add dislike
Add to saved papers

Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: preparation and characterization.

Solid lipid nanoparticles (SLNs) loaded with insulin-mixed micelles (Ins-MMs) were prepared by a novel reverse micelle-double emulsion method, in which sodium cholate (SC) and soybean phosphatidylcholine (SPC) were employed to improve the liposolubility of insulin, and the mixture of stearic acid and palmitic acid were employed to prepare insulin loaded solid lipid nanoparticles (Ins-MM-SLNs). Some of the formulation parameters were optimized to obtain high quality nanoparticles. The particle size and zeta potential measured by photon correlation spectroscopy (PCS) were 114.7+/-4.68 nm and -51.36+/-2.04 mV, respectively. Nanospheres observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed extremely spherical shape. The entrapment efficiency (EE%) and drug loading capacity (DL%) determined with high performance liquid chromatogram (HPLC) by modified ultracentrifuge method were 97.78+/-0.37% and 18.92+/-0.07%, respectively. Differential scanning calorimetry (DSC) of Ins-MM-SLNs indicated no tendency of recrystallisation. The core-shell drug loading pattern of the SLNs was confirmed by fluorescence spectra and polyacrylamide gel electrophoresis (PAGE) which also proved the integrity of insulin after being incorporated into lipid carrier. The drug release behavior was studied by in situ and externally sink method and the release pattern of drug was found to follow Weibull and Higuchi equations. Results of stability evaluation showed a relatively long-term stability after storage at 4 degrees C for 6 months. In conclusion, SLNs with small particle size, excellent physical stability, high entrapment efficiency, good loading capacity for protein drug can be produced by this novel reverse micelle-double emulsion method in present study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app