COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Comparison of dynamic measurements of pulse contour with pulsed heat continuous cardiac output in postoperative cardiac surgical patients.

Cardiac output (CO) can be measured using bolus thermodilution via a pulmonary artery catheter (PAC) and as continuous cardiac output (CCO), using pulsed heat thermoditution. Pulse contour cardiac output (PCCO) measures continuous CO by analysis of the arterial waveform after calibration with thermodilution CO. The Pulsion Medical Systems (PiCCO system) achieves this by transpulmonary aortic thermodilution (TDtpa). There is uncertainty regarding the agreement between TDtpa, CCO, and PCCO CO measurements in situations of rapid haemodynamic changes. We studied the agreement of the measures by comparing digital recordings of cardiac index (CI) determined by PCCO and CCO (PCCI and CCI, respectively) made during periods of haemodynamic instability. After ethics committee approval we studied four post-coronary artery bypass graft patients, in the immediate postoperative period. Each patient had a 7.5F CCO catheter (Edwards Lifesciences) and a 5F, 20cm PCCO femoral artery catheter. Digital recordings were obtained for the first 12-18 postoperative hours. Six epochs of instability were identified in the first two to three postoperative hours, and at the commencement of inotropic or vasoactive drugs. Notable features, despite frequent PCCO calibrations, were the marked difference of PCCI compared to CCI. In contradistinction, they tracked very closely during a period of stability. Limitations of both methods were noted. Whilst PCCO responded to rapid change, it developed significant error during haemodynmamic instability and requires frequent recalibration. CCO on the other hand has a considerable time lag in responding to changes in CO. The way a monitor measures CO must be taken into account when using the data in clinical management.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app