Simulation-based analysis of fluid flow and electrokinetic phenomena in microfluidic devices

Siva Krishnamoorthy, Aditya S Bedekar, Jianjun Feng, Shivshankar Sundaram
Clinics in Laboratory Medicine 2007, 27 (1): 41-59
Recent advances in microfabrication techniques, sensing methods, and miniaturization have enabled automated analysis of samples using microfluidic systems. Each unique application requires successful custom development of integrated lab-on-a-chip devices. This involves design, analysis and characterization of individual components, (pumps, valves, mixers, separators, sensors) and the integrated system. In this regard, first-principle-based simulations of the underlying complex multiphysics phenomena can provide detailed understanding of device function. An overview of modeling and simulation-based analysis for the design and development of microfluidic devices is presented. In particular, the authors highlight some key factors affecting the performance of lab-on-a-chip systems such as surface tension effects, analyte dispersion, Joule heating, and mass transport limitations, and delineate the parameters that influence them. The limitations of these modeling techniques and future needs are discussed.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"