COMPARATIVE STUDY
EVALUATION STUDIES
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Bimodal recovery of quadriceps muscle force within 24 hours after sprint cycling for 30 seconds.

UNLABELLED: The aim of the study was to investigate the manifestation of potentiation and fatigue as well as the coexistence of these phenomena at different muscle lengths during a 24-hour period after a sprint cycling for 30 s.

MATERIAL AND METHODS: Twelve healthy untrained men (mean age 23.6+/-1.7 years) took part in the experiment. The contractility of quadriceps muscle was studied before (Initial) and 2, 5, 30, 60 min and 24 h after exercise via the electrically evoked contractions at 1, 15, 50 Hz and maximal voluntary contractions at short and long muscle length.

RESULTS: 1) In early, fast-recovery phase (within the first 5 min), muscle force evoked by electrical stimulation of 1, 15, 50 Hz was restored at short muscle length, conversely at long length (Initial vs. 5 min: 15 Hz and 50 Hz, both P<0.05), whereas maximal voluntary contraction force was still suppressed at both muscle lengths; 2) in the second phase (from 5 min to 30-60 min), muscle force decreased at low- and high-frequency stimulations and was more expressed at low-frequency stimulation and at short muscle length than that at long length, but the maximum voluntary contraction force recovered to initial; 3) in long-lasting phase (within 24 hours), 15 Hz force was still suppressed at both muscle lengths.

CONCLUSION: A bimodal recovery of contractility of the quadriceps following sprint cycling for 30 s is determined by the concomitant complex interaction of mechanisms enhancing (potentiation) and suppressing (fatigue) contractile potential of the muscle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app