JOURNAL ARTICLE

Mitogen-activated protein kinase kinase inhibition enhances nuclear proapoptotic function of p53 in acute myelogenous leukemia cells

Kensuke Kojima, Marina Konopleva, Ismael J Samudio, Vivian Ruvolo, Michael Andreeff
Cancer Research 2007 April 1, 67 (7): 3210-9
17409429
Activation of the Raf/MEK/ERK pathway and inactivation of wild-type p53 by Mdm2 overexpression are frequent molecular events in acute myelogenous leukemia (AML). We investigated the interaction of Raf/MEK/ERK and p53 pathways after their simultaneous blockades using a selective small-molecule antagonist of Mdm2, Nutlin-3a, and a pharmacologic MEK-specific inhibitor, PD98059. We found that PD98059, which itself has minimal apoptogenic activity, acts synergistically with Nutlin-3a to induce apoptosis in wild-type p53 AML cell lines OCI-AML-3 and MOLM-13. Interestingly, PD98059 enhanced nuclear proapototic function of p53 in these cells. In accordance with the activation of transcription-dependent apoptosis, PD98059 treatment promoted the translocation of p53 from the cytoplasm to the nucleus in OCI-AML-3 cells, in which p53 primarily initiates transcription-independent apoptosis when cells are treated with Nutlin-3a alone. The critical role of p53 localization in cells with increased p53 levels was supported by enhanced apoptosis induction in cells cotreated with Nutlin-3a and the nuclear export inhibitor leptomycin B. PD98059 prevented p53-mediated induction of p21 at the transcriptional level. The repressed expression of antiapototic p21 also seemed to contribute to synergism between PD98059 and Nutlin-3a because (a) the synergistic apoptogenic effect was preserved in G(1) cells, (b) p53-mediated induction of p21 was preferentially seen in G(1) cells, (c) PD98059 strongly antagonized p21 induction by Nutlin-3a, and (d) cells with high p21 levels were resistant to apoptosis. This is the first report showing that the Raf/MEK/ERK pathway regulates the subcellular localization of p53 and the relative contribution of transcription-dependent and transcription-independent pathways in p53-mediated apoptosis.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
17409429
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"