JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Tumors initiated by constitutive Cdk2 activation exhibit transforming growth factor beta resistance and acquire paracrine mitogenic stimulation during progression.

Cancer Research 2007 April 2
Cyclin D1/cyclin-dependent kinase 2 (Cdk2) complexes are present at high frequency in human breast cancer cell lines, but the significance of this observation is unknown. This report shows that expression of a cyclin D1-Cdk2 fusion protein under the control of the mouse mammary tumor virus (MMTV) promoter results in mammary gland hyperplasia and fibrosis, and mammary tumors. Cell lines isolated from MMTV-cyclin D1-Cdk2 (MMTV-D1K2) tumors exhibit Rb and p130 hyperphosphorylation and up-regulation of the protein products of E2F-dependent genes. These results suggest that cyclin D1/Cdk2 complexes may mediate some of the transforming effects that result from cyclin D1 overexpression in human breast cancers. MMTV-D1K2 cancer cells express the hepatocyte growth factor (HGF) receptor, c-Met. MMTV-D1K2 cancer cells also secrete transforming growth factor beta (TGFbeta), but are relatively resistant to TGFbeta antiproliferative effects. Fibroblasts derived from MMTV-D1K2 tumors secrete factors that stimulate the proliferation of MMTV-D1K2 cancer cells, stimulate c-Met tyrosine phosphorylation, and stimulate the phosphorylation of the downstream signaling intermediates p70(s6k) and Akt on activating sites. Together, these results suggest that deregulation of the Cdk/Rb/E2F axis reprograms mammary epithelial cells to initiate a paracrine loop with tumor-associated fibroblasts involving TGFbeta and HGF, resulting in desmoplasia. The MMTV-D1K2 mice should provide a useful model system for the development of therapeutic approaches to block the stromal desmoplastic reaction that likely plays an important role in the progression of multiple types of human tumors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app