Add like
Add dislike
Add to saved papers

Investigating mitotic spindle assembly and function in vitro using Xenopus laevis egg extracts.

Extracts from Xenopus laevis eggs provide a powerful system for the study of cell division processes in vitro through biochemical reconstitution and manipulation, and microscopic analysis. We provide protocols for the preparation of metaphase-arrested extracts and in vitro assays to examine the following pathways of spindle assembly: 1) Sperm nuclei added to meiotic extracts, supporting the formation of half-spindles and bipolar spindle structures around unreplicated chromosomes; 2) sperm nuclei added to extracts that cycle through interphase and form spindles that are capable of undergoing anaphase and chromosome segregation; and 3) spindle formation around chromatin-coated beads. Finally, we describe methods to inhibit a specific protein by immunodepletion or addition of an inhibitor such as a dominant-negative construct. These techniques can be used to analyze the mitotic function of a given protein. It takes approximately 1.5 h to prepare the extract, 1-3 h for spindle-assembly experiments and an additional 1-3 h if immunodepletion is performed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app