Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke.

Brain 2007 July
Human locomotion must be flexible in order to meet varied environmental demands. Alterations to the gait pattern occur on different time scales, ranging from fast, reactive adjustments to slower, more persistent adaptations. A recent study in humans demonstrated that the cerebellum plays a key role in slower walking adaptations in interlimb coordination during split-belt treadmill walking, but not fast reactive changes. It is not known whether cerebral structures are also important in these processes, though some studies of cats have suggested that they are not. We used a split-belt treadmill walking task to test whether cerebral damage from stroke impairs either type of flexibility. Thirteen individuals who had sustained a single stroke more than 6 months prior to the study (four females) and 13 age- and gender-matched healthy control subjects were recruited to participate in the study. Results showed that stroke involving cerebral structures did not impair either reactive or adaptive abilities and did not disrupt storage of new interlimb relationships (i.e. after-effects). This suggests that cerebellar interactions with brainstem, rather than cerebral structures, comprise the critical circuit for this type of interlimb control. Furthermore, the after-effects from a 15-min adaptation session could temporarily induce symmetry in subjects who demonstrated baseline asymmetry of spatiotemporal gait parameters. In order to re-establish symmetric walking, the choice of which leg is on the fast belt during split-belt walking must be based on the subject's initial asymmetry. These findings demonstrate that cerebral stroke survivors are indeed able to adapt interlimb coordination. This raises the possibility that asymmetric walking patterns post-stroke could be remediated utilizing the split-belt treadmill as a long-term rehabilitation strategy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app