COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Renal p38 MAP kinase activity in experimental diabetes.

Renal cell activity of p38 mitogen-activated protein kinase (p38) is increased in the diabetic milieu. p38 mediates signals relevant for the development of diabetic nephropathy (DN). However, renal p38 in Type 1 diabetes in vivo, particularly in conditions reflecting the differences in metabolic control, and its activity in advanced stages of DN, has received less attention. We examined the p38 pathway in renal cortex of rats with streptozotocin diabetes (4 weeks) with poor (DS), moderate (DM), and intensive (DII) metabolic control, achieved by varying doses of insulin therapy. Renal p38 was also studied in 12-month diabetic rats with established nephropathy (DM12) and compared with age-matched controls. p38 activity (in vitro kinase assay and expression of phosphorylated (active) p38 (P-p38)) was increased in DM and DS rats, as compared with non-diabetic controls, and attenuated by intensive insulin treatment. In all groups, P-p38 was predominantly localized in macula densa cells. Diabetic rats also demonstrated P-p38 immunoreactivity in the distal tubule and glomeruli. Enhanced p38 activity in DS and DM rats was not associated with increases in expression of active mitogen-activated protein kinase 3/6, an activator of p38, but paralleled with increased expression of scaffolding protein transforming growth factor-beta-activated protein kinase 1-binding protein 1. Expression of mitogen-activated protein phosphatase-1 (MKP-1), one of the phosphatases involved in inactivation of mitogen-activated protein kinase signaling, was increased in all diabetic groups, irrespective of metabolic control. Renal p38 activation was also detectable in D12 rats with established albuminuria and glomerulosclerosis. In summary, renal cortical p38 activity was increased in diabetic rats at early and advanced stages of nephropathy, as compared with non-diabetic animals, and attenuated by improved metabolic control. p38 activation in diabetes is likely to occur via multiple pathways and cannot be explained by downregulation of MKP-1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app