JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Transcriptional regulation of the endoplasmic reticulum stress gene chop in pancreatic insulin-producing cells.

Diabetes 2007 April
Endoplasmic reticulum stress-mediated apoptosis may play an important role in the destruction of pancreatic beta-cells, thus contributing to the development of type 1 and type 2 diabetes. One of the regulators of endoplasmic reticulum stress-mediated cell death is the CCAAT/enhancer binding protein (C/EBP) homologous protein (Chop). We presently studied the molecular regulation of Chop expression in insulin-producing cells (INS-1E) in response to three pro-apoptotic and endoplasmic reticulum stress-inducing agents, namely the cytokines interleukin-1beta + interferon-gamma, the free fatty acid palmitate, and the sarcoendoplasmic reticulum pump Ca(2+) ATPase blocker cyclopiazonic acid (CPA). Detailed mutagenesis studies of the Chop promoter showed differential regulation of Chop transcription by CPA, cytokines, and palmitate. Whereas palmitate- and cytokine-induced Chop expression was mediated via a C/EBP-activating transcription factor (ATF) composite and AP-1 binding sites, CPA induction required the C/EBP-ATF site and the endoplasmic reticulum stress response element. Cytokines, palmitate, and CPA induced eIF2alpha phosphorylation in INS-1E cells leading to activation of the transcription factor ATF4. Chop transcription in response to cytokines and palmitate depends on the binding of ATF4 and AP-1 to the Chop promoter, but distinct AP-1 dimers were formed by cytokines and palmitate. These results suggest a differential response of beta-cells to diverse endoplasmic reticulum stress inducers, leading to a differential regulation of Chop transcription.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app