Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Specific activation of the glucocorticoid receptor and modulation of signal transduction pathways in human lens epithelial cells.

PURPOSE: Prolonged use of glucocorticoids (GCs) can lead to cataract formation. Lens GC responses have been difficult to elucidate. A previous study showed the presence of the glucocorticoid receptor (GR) in immortalized and primary human lens epithelial cells (hLECs) and GC-induced changes in gene expression. This study demonstrates specific GR activation and identifies the biological effect of GC-induced changes in gene expression in hLECs.

METHODS: HLE B-3 (B-3) and primary cultures of hLECs were transfected with pGRE.Luc and treated with or without dexamethasone (Dex), RU-486, spironolactone, or vehicle. mRNA and protein expression were examined by real-time PCR and Western blot analysis, respectively. Cell proliferation and apoptosis were examined by WST-1 and flow cytometry, respectively.

RESULTS: Dex treatment of B-3 and primary cultures demonstrated specific GR, but not mineralocorticoid receptor (MR), activation and phosphorylation. Pathway analysis revealed GC-induced changes in expression of MAPK regulators. Increased expression of GILZ mRNA and MKP-1 mRNA and protein was observed in immortalized and donor hLECs. This corresponded with a decrease in the phosphorylated forms of RAF, ERK, p38, and AKT, but not in JNK. No net change in LEC proliferation or apoptosis was observed with Dex treatment.

CONCLUSIONS: GC treatment of hLECs activates the GR to modulate the expression of MAPK and PI3K/AKT regulators. This is the first demonstration of GC signaling in hLECs. GCs, MAPK, and PI3K/AKT are involved in cell processes implicated in steroid-induced cataractogenesis. The absence of a net change in cell activity with acute steroid treatment is consistent with the possibility that chronic treatment leads to prolonged modulation of these pathways and steroid-induced cataract.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app