JOURNAL ARTICLE

Optimizing intensive care capacity using individual length-of-stay prediction models

Mark Van Houdenhoven, Duy-Tien Nguyen, Marinus J Eijkemans, Ewout W Steyerberg, Hugo W Tilanus, Diederik Gommers, Gerhard Wullink, Jan Bakker, Geert Kazemier
Critical Care: the Official Journal of the Critical Care Forum 2007, 11 (2): R42
17389032

INTRODUCTION: Effective planning of elective surgical procedures requiring postoperative intensive care is important in preventing cancellations and empty intensive care unit (ICU) beds. To improve planning, we constructed, validated and tested three models designed to predict length of stay (LOS) in the ICU in individual patients.

METHODS: Retrospective data were collected from 518 consecutive patients who underwent oesophagectomy with reconstruction for carcinoma between January 1997 and April 2005. Three multivariable linear regression models for LOS, namely preoperative, postoperative and intra-ICU, were constructed using these data. Internal validation was assessed using bootstrap sampling in order to obtain validated estimates of the explained variance (r2). To determine the potential gain of the best performing model in day-to-day clinical practice, prospective data from a second cohort of 65 consecutive patients undergoing oesophagectomy between May 2005 and April 2006 were used in the model, and the predictive performance of the model was compared with prediction based on mean LOS.

RESULTS: The intra-ICU model had an r2 of 45% after internal validation. Important prognostic variables for LOS included greater patient age, comorbidity, type of surgical approach, intraoperative respiratory minute volume and complications occurring within 72 hours in the ICU. The potential gain of the best model in day-to-day clinical practice was determined relative to mean LOS. Use of the model reduced the deficit number (underestimation) of ICU days by 65 and increased the excess number (overestimation) of ICU days by 23 for the cohort of 65 patients. A conservative analysis conducted in the second, prospective cohort of patients revealed that 7% more oesophagectomies could have been accommodated, and 15% of cancelled procedures could have been prevented.

CONCLUSION: Patient characteristics can be used to create models that will help in predicting LOS in the ICU. This will result in more efficient use of ICU beds and fewer cancellations.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
17389032
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"