JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Development of a receptor-based microplate assay for the detection of beta-lactam antibiotics in different food matrices.

The penicillin-binding protein PBP 2x* from Streptococcus pneumoniae has been utilised to develop a novel microplate assay for the detection and determination of penicillins and cephalosporins with intact beta-lactam structure in milk, bovine and porcine muscle juice, honey and egg. In the assay, the receptor protein is immobilised to a microplate in the first step. To each sample a bifunctional reagent is added, with ampicillin and digoxigenin as functional groups (DIG-AMPI). The amount of bifunctional reagent, which is bound via its ampicillin part to the receptor protein, decreases with increasing beta-lactam concentration in the sample. The detection step uses anti-digoxigenin F(ab) fragments marked with horseradish peroxidase. The more bifunctional reagent is bound to the receptor protein, the more antibody fragments are bound via the digoxigenin part of the reagent. A maximum colour development with tetramethylbenzidine as chromogen for the peroxidase reaction is achieved, when no beta-lactam residues are present. A fractional factorial design was applied to detect chemometrically effects and interactions of the assay parameters. For optimisation of the significant parameters a Box-Behnken design was used. The assay has been developed for various food matrices as screening test with the option for a quantitative assay, when the identity of the residual beta-lactam is known (e.g. elimination studies). Cefoperazon, cefquinome, cefazolin, cloxacillin, ampicillin and benzylpenicillin could be detected at levels corresponding to 1/2 EU maximum residue limit (MRL) in milk, meat juice from muscle tissue of different species, egg and honey (where applicable) without needing lengthy and elaborate sample pre-treatment. Matrix calibration curves are presented, which show that quantitative analyses are possible.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app