Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application

Kwang Hyo Chung, Jung Woo Hong, Dae-Sik Lee, Hyun C Yoon
Analytica Chimica Acta 2007 February 28, 585 (1): 1-10
A polymer microfluidic chip accomplishing automated sample flow and replacement without external controls and an application of the chip for bioanalytical reaction were described. All the fluidic operations in the chip were achieved by only natural capillary flow in a time-planned sequence. For the control of the capillary flow, the geometry of the channels and chambers in the chip was designed based on theoretical considerations and numerical simulations. The microfluidic chip was made by using polymer replication techniques, which were suitable for fast and cheap fabrication. The test for a biochemical analysis, employing an enzyme (HRP)-catalyzed precipitation reaction, exhibited a good performance using the developed chip. The presented microfluidic method would be applicable to biochemical lab-on-a-chips with integrated fluid replacement steps, such as affinity elution and solution exchange during biosensor signaling.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"