JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Saturated humidity accelerates lateral root development in rice (Oryza sativa L.) seedlings by increasing phloem-based auxin transport.

Auxin transport plays a significant role modifying plant growth and development in response to environmental signals such as light and gravity. However, the effect of humidity on auxin transport is rarely documented. It is shown here that the transport of labelled indole-3-acetic acid (IAA) from the shoot to the root is accelerated in rice (Oryza sativa L. ssp. indica cv. IR8) seedlings grown under saturated humidity (SH-seedlings) compared with plants grown under normal humidity (NH-seedlings). The development of lateral roots in SH-seedlings was greatly enhanced compared with NH-seedlings. Removal of the shoot from SH-seedlings reduced the density of lateral roots, and the application of IAA to the cut stem restored the lateral root density, while the decapitation of NH-seedlings did not alter lateral root development. Phloem-based auxin transport appeared responsible for enhanced lateral root formation in SH-seedlings since (i) the rate of IAA transport from the shoot to the root tip was greater than 3.5 cm h-1 and (ii) naphthylphthalamic acid (NPA)-induced reduction of polar auxin transport in the shoot did not influence the number of lateral roots in SH-seedlings. It is proposed that high humidity conditions accelerate the phloem-based transport of IAA from the leaf to the root, resulting in an increase in the number of lateral roots.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app