Add like
Add dislike
Add to saved papers

In vitro characterization of the thyroidal uptake of O-(2-[(18)F]fluoroethyl)-L-tyrosine.

OBJECTIVES: Positron emission tomography (PET) using O-(2-[(18)F]fluoroethyl)-l-tyrosine (FET) has been successfully employed in the diagnostic workup of brain tumors. Knowledge on the mechanisms of the uptake of radiolabeled amino acids into thyroidal tissues and well-differentiated thyroid carcinomas is limited. We therefore studied several factors potentially governing the uptake of FET in the rat thyroid cell line FRTL-5 in comparison with thyroid tumor cell lines of human origin.

METHODS: FET uptake was determined in thyroid-stimulating hormone (TSH)-stimulated and TSH-deprived FRTL-5 cells, as well as in the cell lines U-138 MG (human glioblastoma), Onco DG-1 (human papillary thyroid carcinoma) and ML-1 (human follicular thyroid carcinoma). The TSH responsiveness of cells was measured by the incubation of TSH-treated and untreated control cells with 2-[(18)F]fluoro-2-deoxyglucose (FDG). All cellular tracer uptake values were related to total protein mass and expressed as percentage per milligram. For countertransport studies, FRTL-5 cells were exposed to 10-300 microM tyrosine methyl ester. TSH-stimulated and TSH-deprived FRTL-5 cells were incubated with 100 kBq/ml FET for 20 min. 2-Aminobicyclo-[2,2,1]heptane-2-carboxylic acid (BCH), alpha-(methylamino)-isobutyric acid, L-serine and tryptophan were used as competitive inhibitors of FET uptake. All inhibition experiments were repeated with the human thyroid carcinoma cell lines to obtain comparative FET uptake values.

RESULTS: The FET uptake was 155+/-30%/mg in FRTL-5 cells (n=6), 108+/-14%/mg in U-138 MG cells (n=6), 194+/-60%/mg in ML-1 cells (n=9) and 64+/-23%/mg in Onco DG-1 cells (n=6) under identical incubation conditions. Preloading with tyrosine methyl ester increased cellular FET uptake dose dependently in FRTL-5 cells (165+/-25%, n=6). While TSH increased the uptake of FDG in FRTL-5 cells by sixfold, there was no TSH effect on FET accumulation. FET uptake by TSH-treated FRTL-5 cells was sodium independent and significantly inhibited by BCH (91.4+/-3.0%, n=9), tryptophan (94.8+/-1.6%, n=8) and serine (83.2+/-10.8%, n=12). TSH-starved FRTL-5 cells had a sodium-dependent component with a similar inhibition pattern. Onco DG-1 mainly confirmed the inhibition pattern of FET uptake in FRTL-5 cells, reflecting System-L-mediated FET uptake that was blocked by BCH and serine (72-85%, n=9). ML-1 cells revealed a pronounced sodium-dependent FET uptake that was inhibited by tryptophan (70+/-10%, n=9, P<.05) in the presence and in the absence of sodium, suggesting a contribution of alternative amino acid carriers.

CONCLUSION: FET uptake by FRTL-5 cells is not TSH dependent. FET uptake by FRTL-5 cells seems to be mainly mediated by a carrier exhibiting the characteristics of the System L amino acid transporter. FET uptake in thyroid cells and thyroid carcinoma cells was in the same range as that in a glioblastoma cell line. This encourages further research efforts towards the clinical evaluation of FET for the diagnostic workup of well-differentiated thyroid carcinomas.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app