JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Role of gap junctions in regulation of progesterone secretion by ovine luteal cells in vitro.

Reproduction 2007 March
To evaluate the role of gap junctions in the regulation of progesterone secretion, two experiments were conducted. In Experiment 1, luteal cells obtained on days 5, 10, and 15 were cultured overnight at densities of 50 x 10(3), 100 x 10(3), 300 x 10(3), and 600 x 10(3) cells/dish in medium containing: (1) no treatment (control), (2) LH, or (3) dbcAMP. In Experiment 2, luteal cells from days 5 and 10 of the estrous cycle were transfected with siRNA, which targeted the connexin (Cx) 43 gene. In Experiment 1, progesterone secretion, Cx43 mRNA expression, and the rates of gap junctional intercellular communication (GJIC), were affected by the day of the estrous cycle, cell density, and treatments (LH or dbcAMP). The changes in progesterone secretion were positively correlated with the changes in Cx43 mRNA expression and the rates of GJIC. Cx43 was detected on the luteal cell borders in every culture, and luteal cells expressed 3beta-hydroxysteroid dehydrogenase. In Experiment 2, two Cx43 gene-targeted sequences decreased Cx43 mRNA expression and progesterone production by luteal cells. The changes in Cx43 mRNA expression were positively correlated with changes in progesterone concentration in media. Thus, our data demonstrate a relationship between gap junctions and progesterone secretion that was supported by (1) the positive correlations between progesterone secretion and Cx43 mRNA expression and GJIC of luteal cells and (2) the inhibition of Cx43 mRNA expression by siRNA that resulted in decreased production of progesterone by luteal cells. This suggests that gap junctions may be involved in the regulation of steroidogenesis in the ovine corpus luteum.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app