Add like
Add dislike
Add to saved papers

Alkylthio bridged 44 cve triangular platinum clusters: synthesis, oxidation, degradation, ligand substitution, and quantum chemical calculations.

Acetylplatinum(II) complexes trans-[Pt(COMe)Cl(L)2] (L = PPh3, 2a; P(4-FC6H4)3, 2b) were found to react with dialkyldisulfides R2S2 (R = Me, Et, Pr, Bu; Pr = n-propyl, Bu = n-butyl), yielding trinuclear 44 cve (cluster valence electrons) platinum clusters [(PtL)3(mu-SR)3]Cl (4). The analogous reaction of 2a-b with Ph2S2 gave SPh bridged dinuclear complexes trans-[{PtCl(L)}2(mu-SPh)2] (5), whereas the addition of Bn2S2 (Bn = benzyl) to 2a ended up in the formation of [{Pt(PPh3)}3(mu3-S)(mu-SBn)3]Cl (6). Theoretical studies based on the AIM theory revealed that type 4 complexes must be regarded as triangular platinum clusters with Pt-Pt bonds whereas complex 6 must be treated as a sulfur capped 48 ve (valence electrons) trinuclear platinum(II) complex without Pt-Pt bonding interactions. Phosphine ligands with a lower donor capability in clusters 4 proved to be subject to substitution by stronger donating monodentate phosphine ligands (L' = PMePh2, PMe2Ph, PBu3) yielding clusters [(PtL')3(mu-SR)3]Cl (9). In case of the reaction of clusters 4 and 9 with PPh2CH2PPh2 (dppm), a fragmentation reaction occurred, and the complexes [(PtL)2(mu-SMe)(mu-dppm)]Cl (12) and [Pt(mu-SMe)2(dppm)] (13) were isolated. Furthermore, oxidation reactions of cluster [{Pt(PPh3)}3(mu-SMe)3]Cl (4a) using halogens (Br2, I2) gave dimeric platinum(II) complexes cis-[{PtX(PPh3)}2(mu-SMe)2] (14, X = Br, I) whereas oxidation reactions using sulfur and selenium afforded chalcogen capped trinuclear 48 ve complexes [{Pt(PPh3)}3(mu3-E)(mu-SMe)3] (15, E = S, Se). All compounds were fully characterized by means of NMR and IR spectroscopy, microanalyses, and ESI mass spectrometry. Furthermore, X-ray diffraction analyses were performed for the triangular cluster 4a, the trinuclear complex 6, as well as for the dinuclear complexes trans-[{Pt(AsPh3)}2(mu-SPh)2] (5c), [{Pt(PPh3)}2(mu-SMe)(mu-dppm)]Cl (12a), and [{{PtBr(PPh3)}2(mu-SMe)2] (14a).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app