Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Lentiviral vector-mediated autonomous differentiation of mouse bone marrow cells into immunologically potent dendritic cell vaccines.

Approaches facilitating generation of dendritic cell (DC) vaccines for clinical trials and enhancing their viability, bio-distribution, and capacity to stimulate antigen-specific immune responses are critical for immunotherapy. We programmed mouse bone marrow (BM) cells with lentiviral vectors (LV-GI4) so that they produced granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4) in an autonomous manner. DC/LV-GI4 cells underwent autonomous trans-differentiation to yield typical phenotypic characteristics of DCs. DC/LV-GI4 cells that self-differentiated either ex vivo or in vivo showed persistent and robust viability and stimulated high influx of DCs into draining lymph nodes (LNs). The immunostimulatory efficacy of DC/LV-GI4 cells was evaluated using MART1 and TRP2 as co-expressed melanoma antigens. Mice vaccinated with DC/LV-GI4 cells that self-differentiated in vitro or in vivo produced potent antigen-specific responses against melanoma, which correlated with protective and long-term therapeutic anti-tumor effects. Thus, DC precursors can be genetically engineered after a single ex vivo manipulation, resulting in DC vaccines with improved activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app