Add like
Add dislike
Add to saved papers

Endoplasmic reticulum stress-induced death of mouse embryonic fibroblasts requires the intrinsic pathway of apoptosis.

Members of the caspase family are essential for many apoptotic programs. We studied mouse embryonic fibroblasts (MEFs) deficient in caspases 3 and 7 and in caspase 9 to determine the role of these proteases in endoplasmic reticulum (ER) stress-induced apoptosis. Both caspase 3(-/-)/caspase 7(-/-) and caspase 9(-/-) MEFs were resistant to cytotoxicity induced via ER stress and failed to exhibit apoptotic morphology. Specifically, apoptosis induced by increased intracellular calcium was shown to depend only on caspases 3 and 9, whereas apoptosis induced by disruption of ER function depended additionally on caspase 7. Caspase 3(-/-)/caspase 7(-/-) and caspase 9(-/-) MEFs also exhibited decreased loss of mitochondrial membrane potential, which correlated with altered caspase 9 processing, increased induction of procaspase 11, and decreased processing of caspase 12 in caspase 3(-/-)/caspase 7(-/-) cells. Furthermore, disruption of ER function was sufficient to induce accumulation of cleaved caspase 3 and 7 in a heavy membrane compartment, suggesting a potential mechanism for caspase 12 processing and its role as an amplifier in the death pathway. Caspase 8(-/-) MEFs were not resistant to ER stress-induced cytotoxicity, and processing of caspase 8 was not observed upon induction of ER stress. This study thus demonstrates a requirement for caspases 3 and 9 and a key role for the intrinsic pathway in ER stress-induced apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app