Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Covalent bonding of vancomycin to Ti6Al4V alloy pins provides long-term inhibition of Staphylococcus aureus colonization.

Self-protecting Ti6Al4V alloy pins were prepared by covalent bonding of bis(ethylene glycol) linkers, then vancomycin to the oxidized, aminopropylated Ti6Al4V alloy surface. Fluorescence modification-enabled estimation of yields of free amines on the metallic surface monolayer at each reaction step. The vancomycin-protected Ti6Al4V pins were not colonized by Staphylococcus aureus, even after 44days storage in physiological buffer. These results provide a basis for testing self-protection against S. aureus colonization in animal models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app