Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Epigenetic profiling of multidrug-resistant human MCF-7 breast adenocarcinoma cells reveals novel hyper- and hypomethylated targets.

The successful treatment of cancer requires a clear understanding of multiple interacting factors involved in the development of drug resistance. Presently, two hypotheses, genetic and epigenetic, have been proposed to explain mechanisms of acquired cancer drug resistance. In the present study, we examined the alterations in epigenetic mechanisms in the drug-resistant MCF-7 human breast cancer cells induced by doxorubicin (DOX) and cisplatin (cisDDP), two chemotherapeutic drugs with different modes of action. Despite this difference, both of the drug-resistant cell lines displayed similar pronounced changes in the global epigenetic landscape showing loss of global DNA methylation, loss of histone H4 lysine 20 trimethylation, increased phosporylation of histone H3 serine 10, and diminished expression of Suv4-20h2 histone methyltransferase compared with parental MCF-7 cells. In addition to global epigenetic changes, the MCF-7/DOX and MCF-7/cisDDP drug-resistant cells are characterized by extensive alterations in region-specific DNA methylation, as indicated by the appearance of the number of differentially methylated DNA genes. A detailed analysis of hypo- and hypermethylated DNA sequences revealed that the acquisition of drug-resistant phenotype of MCF-7 cells to DOX and cisDDP, in addition to specific alterations induced by a particular drug only, was characterized by three major common mechanisms: dysfunction of genes involved in estrogen metabolism (sulfatase 2 and estrogen receptor alpha), apoptosis (p73, alpha-tubulin, BCL2-antagonist of cell death, tissue transglutaminase 2 and forkhead box protein K1), and cell-cell contact (leptin, stromal cell-derived factor receptor 1, activin A receptor E-cadherin) and showed that two opposing hypo- and hypermethylation processes may enhance and complement each other in the disruption of these pathways. These results provided evidence that epigenetic changes are an important feature of cancer cells with acquired drug-resistant phenotype and may be a crucial contributing factor to its development. Finally, deregulation of similar pathways may explain the existence and provide mechanism of cross-resistance of cancer cells to different types of chemotherapeutic agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app