JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Induced expression of polysialic acid in the spinal cord promotes regeneration of sensory axons.

After spinal cord injury axonal regeneration is prevented by glial scar formation. In this study we examined whether induced expression of polysialic acid (PSA) in the lesion site would render the glial scar permissive to axonal regeneration after dorsal column transection. PSA was induced by lentiviral vector-mediated expression of polysialyltransferase (LV/PST). PSA expression increased astrocyte infiltration and permitted the penetration of regenerating axons across the caudal border of the lesion and into the lesion cavity. In LV/PST-injected animals with a peripheral nerve-conditioning lesion, 20 times more axons grew into the lesion cavity than those LV/GFP-injected plus conditioning lesion, and some axons grew across the cavity and extended to the rostral cord, while in LV/GFP group most ascending axons terminated at the caudal border of the lesion. Our result suggests that induced expression of PSA can provide a favorable environment for axonal regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app