Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Pituitary adenylate cyclase-activating polypeptide stimulates renin secretion via activation of PAC1 receptors.

Besides of its functional role in the nervous system, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is involved in the regulation of cardiovascular function. Therefore, PACAP is a potent vasodilator in several vascular beds, including the renal vasculature. Because the kidney expresses both PACAP and PACAP-binding sites, it was speculated that PACAP might regulate cardiovascular function by direct vascular effects and indirectly by regulating renin release from the kidneys. PACAP (1-27) stimulated renin secretion from isolated perfused kidneys of rats 4.9-fold with a half-maximum concentration of 1.9 nmol/L. In addition, PACAP stimulated renin release and enhanced membrane capacitance of isolated juxtaglomerular cells, indicating a direct stimulation of exocytotic events. The effect of PACAP on renin release was mediated by the specific PACAP receptors (PAC1), because PACAP (1-27) applied in concentrations in the physiologic range (10 and 100 pmol/L) did not enhance renin release from isolated kidneys of PAC1 receptor knockout mice (PAC1-/-), whereas it stimulated renin release 1.38- and 2.5-fold in kidneys from wild-type mice. Moreover, plasma renin concentration was significantly lower in PAC1-/- compared with their wild-type littermates under control conditions as well as under a low- or high-salt diet and under treatment with the angiotensin-converting enzyme inhibitor ramipril, whereas no differences in plasma renin concentration between the genotypes were detectable after water deprivation. These data show that PACAP acting on PAC1 receptors potently stimulates renin release, serving as a tonic enhancer of the renin system in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app