Add like
Add dislike
Add to saved papers

Role of DNA-PKcs in the bystander effect after low- or high-LET irradiation.

PURPOSE: To investigate the role of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) in the medium-mediated bystander effect for chromosomal aberrations induced by low-linear energy transfer (LET) X-rays and high-LET heavy ions in normal human fibroblast cells.

MATERIALS AND METHODS: The recipient cells were treated for 12 h with conditioned medium, which was harvested from donor cells at 24 h after exposure to 10 Gy of soft X-rays (5 keV/microm) and 20Ne ions (437 keV/microm), followed by analyses of chromosome aberrations in recipient cells with premature chromosome condensation methods. To examine the role of DNA-PKcs and nitric oxide (NO), cells were treated with its inhibitor LY294002 (LY) and its scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (c-PTIO), respectively.

RESULTS: Increased frequency of chromosome aberrations in recipient cells treated with conditioned medium from irradiated but not from un-irradiated donor cells was observed which was independent of radiation type. Bystander induction of chromosome aberrations in recipient cells was mitigated when donor cells were treated with LY before irradiation and with c-PTIO after irradiation, and was enhanced when recipient cells were treated with LY before treatment of recipient cells with conditioned medium from irradiated donor cells.

CONCLUSION: Irradiated normal human cells secrete NO and other molecules which in turn transmit radiation signals to unirradiated bystander cells, leading to the induction of bystander chromosome aberrations partially repairable by DNA-PKcs-mediated DNA damage repair machinery, such as non-homologous end-joining repair pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app