Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

S1P modulator FTY720 limits matrix expansion in acute anti-thy1 mesangioproliferative glomerulonephritis.

FTY720 is a novel immune modulator whose primary action is blood lymphocyte depletion through interaction with sphingosine-1-phosphate (S1P) receptors. The present study analyzes the effect of FTY720 on both the early mesangial cell injury and the subsequent matrix expansion phase of experimental mesangioproliferative glomerulonephritis. Disease was induced by injection of OX-7 anti-thy1 antibody into male Wistar rats. In both protocols, FTY720 administration (0.3 mg/kg body wt) resulted in a selective and very marked reduction in blood lymphocyte count. In the injury experiment, the S1P receptor modulator was given starting 5 days before and continued until 1 day after antibody injection. FTY720 did not significantly affect the degree of anti-thy1-induced mesangial cell lysis and glomerular-inducible nitric oxide production. In the matrix expansion experiment, FTY720 treatment was started 1 day after antibody injection and continued until day 7. In this protocol, the S1P modulator reduced proteinuria, histological matrix expansion, and glomerular protein expression of TGF-beta(1), fibronectin, and PAI-1. Glomerular collagen III staining intensity was decreased. FTY720 reduced markedly glomerular lymphocyte number per cross section and to a lesser degree macrophage infiltration. In conclusion, FTY720 significantly limits TGF-beta(1) overexpression and matrix protein expression following induction of acute anti-thy glomerulonephritis, involving reductions in blood and glomerular lymphocyte numbers. The results suggest that lymphocytes actively contribute to matrix expansion in experimental mesangioproliferative glomerulonephritis. Our study expands on findings on FTY720's beneficial effects on tubulointerstitial and functional disease progression previously reported in anti-thy1-induced chronic glomerulosclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app