JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Blood pressure lowering after experimental cerebral ischemia provides neurovascular protection.

BACKGROUND: There is evidence that acutely elevated blood pressure (BP) after stroke is associated with increased cerebral hemorrhage and edema. Previous experiments in our laboratory have shown that candesartan 1 mg/kg administered after reperfusion in a model of hypertension after experimental ischemic stroke reduces neurovascular damage and improves outcome. These results could be either mediated by BP lowering or a BP-independent cerebrovascular protective effect.

OBJECTIVES: To determine the contribution of BP lowering to the neurovascular protection previously reported with candesartan after stroke.

METHODS: Male Wistar rats (280-305 g) underwent 3 h of middle cerebral artery occlusion (MCAO). At reperfusion, either hydralazine 1 mg/kg (n = 8), enalapril 5 mg/kg (n = 7) or enalapril 10 mg/kg (n = 8) were administered intravenously. BP was measured by telemetry for 2 days before and 24 h after MCAO. After neurological function was assessed, brain tissue was processed for infarct size and hemoglobin content analyses.

RESULTS: Mean arterial pressure (MAP) increased from 92 to 124 mmHg immediately upon MCAO and decreased to 112 mmHg after reperfusion, remaining elevated for 24 h (P < 0.0001) in the saline group. Hydralazine reduced MAP (P = 0.048) and infarct size (53 versus 30%, P = 0.0083), and there was a trend towards decreased hemoglobin content. Enalapril 5 mg/kg did not significantly change MAP or other outcomes. Enalapril 10 mg/kg reduced MAP (P < 0.0001) and infarct size (53 versus 29%, P = 0.003). There was an intermediate effect on both hemoglobin content and neurological function, neither one was significant. The time course of BP lowering varied with each treatment.

CONCLUSION: Acute BP lowering after reperfusion in acute ischemic stroke is an effective strategy to achieve neurovascular protection. The rate, extent and mechanism of BP lowering may determine the magnitude of protection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app