JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Dimethylarginine dimethylaminohydrolase promotes endothelial repair after vascular injury.

OBJECTIVES: We sought to determine if a reduction in asymmetric dimethylarginine (ADMA) enhances endothelial regeneration.

BACKGROUND: Asymmetric dimethylarginine is an endogenous inhibitor of nitric oxide synthase (NOS). Increased plasma levels of ADMA are associated with endothelial vasodilator dysfunction in patients with vascular disease or risk factors. Asymmetric dimethylarginine is eliminated largely by the action of dimethylarginine dimethylaminohydrolase (DDAH), which exists in 2 isoforms. Dimethylarginine dimethylaminohydrolase-1 transgenic (TG) mice manifest increased DDAH activity, reduced plasma and tissue ADMA levels, increased nitric oxide synthesis, and reduced systemic vascular resistance.

METHODS: The left femoral arteries of DDAH1 TG mice and wild-type (WT) mice were injured by a straight spring wire, and regeneration of the endothelial cell (EC) monolayer was assessed. Endothelial sprouting was assayed with growth factor-reduced Matrigel.

RESULTS: Regeneration of the EC monolayer was more complete 1 week after injury in TG mice (WT vs. TG: 40.0 +/- 6.5% vs. 61.2 +/- 6.4%, p < 0.05). The number of CD45 positive cells at the injured sites was reduced by 62% in DDAH TG mice (p < 0.05). Four weeks after injury, the neointima area and intima/media ratio were attenuated in DDAH TG mice (WT vs. TG: 0.049 +/- 0.050 mm2 vs. 0.031 +/- 0.060 mm2, 3.1 +/- 0.5 vs. 1.7 +/- 0.2, respectively, p < 0.05). Endothelial cell sprouting from vascular segments increased in TG mice (WT vs. TG: 24.3 +/- 3.9 vs. 39.0 +/- 2.2, p < 0.05).

CONCLUSIONS: We find for the first time an important role for DDAH in EC regeneration and in neointima formation. Strategies to enhance DDAH expression or activity might be useful in restoring the endothelial monolayer and in treating vascular disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app