Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mapping of aggrecan, hyaluronic acid, heparan sulphate proteoglycans and aquaporin 4 in the central nervous system of the mouse.

The extracellular matrix (ECM) of the central nervous system (CNS) is found dispersed in the neuropil or forming aggregates around the neurons called perineuronal nets (PNNs). The ECM mainly contains chondroitin sulphate proteoglycans (CSPG), hyaluronic acid (HA) and tenascin-R. Heparan sulphate proteoglycans (HSPG) can also be secreted in the ECM or be part of the cell membrane. The ECM has a heterogeneous distribution which has been linked to several functions, such as specific regional maintenance of hydrodynamic properties in the CNS, in which aquaporins (AQP) play an important role. AQP are a family of membrane proteins which acts as a water channel and AQP4 is the most abundant isoform in the brain. Nevertheless the importance of these proteins, their distribution and correlation in the whole CNS of mice is only partially known. In the present study, the histochemical and immunohistochemical distribution of PNNs, using Wisteria floribunda agglutinin (WFA), aggrecan, HA, HSPGs and AQP4 is described, and their perineuronal and neuropil staining has been semi-quantitatively evaluated in the whole CNS of mice. The results showed that the aggrecan, HA and HSPGs perineuronal distribution coincided partially and this could be related to ECM functional properties. AQP4 showed a heterogeneous distribution throughout the CNS. In some areas, an inverse correlation between AQP4 and ECM components has been observed, suggesting a complementary role for both in the maintenance of water homeostasis. A common location for AQP4 and HSPGs has also been observed in CNS neuropil.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app