JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Transient exposure to hydrogen peroxide causes an increase in mitochondria-derived superoxide as a result of sustained alteration in L-type Ca2+ channel function in the absence of apoptosis in ventricular myocytes.

Circulation Research 2007 April 14
We sought to understand the effect of a transient exposure of cardiac myocytes to H(2)O(2) at a concentration that did not induce apoptosis. Myocytes were exposed to 30 micromol/L H(2)O(2) for 5 minutes followed by 10 U/mL catalase for 5 minutes to degrade the H(2)O(2). Cellular superoxide was measured using dihydroethidium. Transient exposure to H(2)O(2) caused a 66.4% increase in dihydroethidium signal compared with controls exposed to only catalase, without activation of caspase 3 or evidence of necrosis. The increase in dihydroethidium signal was attenuated by the mitochondrial inhibitors myxothiazol or carbonyl cyanide p-(trifluoromethoxy)phenyl-hydrazone and when calcium uptake by the mitochondria was inhibited with Ru360. We investigated the L-type Ca(2+) channel (I(Ca-L)) as a source of calcium influx. Nisoldipine, an inhibitor of I(Ca-L), attenuated the increase in superoxide. Basal channel activity increased from 5.4 to 8.9 pA/pF. Diastolic calcium was significantly increased in quiescent and contracting myocytes after H(2)O(2). The response of I(Ca-L) to beta-adrenergic receptor stimulation was used as a functional reporter because decreasing intracellular H(2)O(2) alters the sensitivity of I(Ca-L) to isoproterenol. H(2)O(2) increased the K(0.5) required for activation of I(Ca-L) by isoproterenol from 5.8 to 27.8 nmol/L. This effect and the increase in basal current density persisted for several hours after H(2)O(2). We propose that extracellular H(2)O(2) is associated with an increase in superoxide from the mitochondria caused by an increase in Ca(2+) influx from I(Ca-L). The effect persists because a positive feedback exists among increased basal channel activity, elevated intracellular calcium, and superoxide production by the mitochondria.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app