We have located links that may give you full text access.
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Trisomy for the Down syndrome 'critical region' is necessary but not sufficient for brain phenotypes of trisomic mice.
Human Molecular Genetics 2007 April 2
Trisomic Ts65Dn mice show direct parallels with many phenotypes of Down syndrome (DS), including effects on the structure of cerebellum and hippocampus. A small segment of Hsa21 known as the 'DS critical region' (DSCR) has been held to contain a gene or genes sufficient to cause impairment in learning and memory tasks involving the hippocampus. To test this hypothesis, we developed Ts1Rhr and Ms1Rhr mouse models that are, respectively, trisomic and monosomic for this region. Here, we show that trisomy for the DSCR alone is not sufficient to produce the structural and functional features of hippocampal impairment that are seen in the Ts65Dn mouse and DS. However, when the critical region is returned to normal dosage in trisomic Ms1Rhr/Ts65Dn mice, performance in the Morris water maze is identical to euploid, demonstrating that this region is necessary for the phenotype. Thus, although the prediction of the critical region hypothesis was disproved, novel gene dosage effects were identified, which help to define how trisomy for this segment of the chromosome contributes to phenotypes of DS.
Full text links
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app