RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Deficiency of the autoimmune regulator AIRE in thymomas is insufficient to elicit autoimmune polyendocrinopathy syndrome type 1 (APS-1).

Thymomas are thymic epithelial neoplasms, associated with a variety of autoimmune disorders (especially myasthenia gravis), that apparently result from aberrant intra-tumourous thymopoiesis and export of inefficiently tolerized T-cells to the periphery. The autoimmune regulator (AIRE) drives the expression of self-antigens in the thymic medulla and plays an essential role in 'central' tolerance in both humans and mice. However, while inactivating AIRE mutations result in the 'autoimmune polyendocrinopathy syndrome type 1' (APS-1), its major features are not well reproduced in AIRE-knock-out mice. Therefore, alternative human disease scenarios with concomitant AIRE deficiency may be valuable tools to test conclusions drawn from mouse models. Here we show, in a large series, that approximately 95% of thymoma patients are 'chimeric'; expression of AIRE and major AIRE-related autoantigens (eg insulin) were undetectable in their tumours but maintained in their remnant thymic tissue and lymph nodes. Notably, despite the AIRE-deficient thymopoiesis in thymomas, disorders and autoantibodies typical of APS-1 were distinctly uncommon in these patients. The one striking similarity was in the recently observed neutralizing anti-type I interferon (IFN) antibodies, which are found at diagnosis in 100% of patients with APS-1 and in approximately 60% of patients with thymomas, as we show here. We conclude that APS-1 type autoantigens must be protected from autoimmunity by mechanisms that do not extend to the muscle autoantigens so frequently targeted in thymoma patients but so rarely recognized in APS-1. Thus our findings argue strongly for a tolerogenic function of AIRE beyond its role in negative T-cell selection in human thymopoiesis, and/or for specific autoimmunization against muscle in thymomas.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app