English Abstract
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

[Particle image velocimetry in measuring the flow fields distribution in carotid artery bifurcation model].

To understand the local hemodynamics of modified TF-AHCB carotid bifurcation model, using particle image velocimetry technique to measure the instantaneous velocity distribution of the model attatched to a circuit. The velocity was controlled by regulating the height of the reservoir. The working fluid consists of glycerine and water mixture with viscosity of 3.75 mPa.s similar to human blood. Instantaneous velocity fields were obtained by PIV and the shear stresses were calculated according to the velocity. The results showed that inside the model, there were a large flow separation and an anticlockwise rotating vortex on the lateral wall of ICA, The location and distance of the vortex changed with the flow velocity. The higher the flow velocity, the smaller the vortex distance, and the farther the location. The shear stresses on the lateral wall were significantly lower in all work condition. And there a low shear stress kernel when the velocity was lower than 0.839 m/s. The location of the low shear stress was just the position of atherosclerosis. The flow pattern inside the model consists of large flow separation and vortex zones. And there are low shear stress zones at the lateral wall of ICA, Where are thought to be associated with the genesis of atherosclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app