COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Comprehensive study of endocrine disrupting compounds using grab and passive sampling at selected wastewater treatment plants in South East Queensland, Australia.

Chemical (gas chromatography-mass spectrometry, GC-MS) and biological (E-Screen assay) analyses were used to determine the concentrations of 15 endocrine disrupting compounds (EDCs) and estrogen equivalent (EEq) in grab and passive samples from five municipal wastewater treatment plants (WWTPs) in South East Queensland, Australia. EEq concentrations derived by E-Screen assays for the grab samples were between 108-356 ng/L for the influents and < 1-14.8 ng/L for the effluents with the exception of one effluent sample which was at 67.8 ng/L EEq. The EDC concentrations and EEq values for the passive samples were several times lower than those of the grab samples: a decrease probably caused by, but not limited to biofouling, low flow rate, biodegradation and temperature which can progressively reduce the uptake of compounds into the sampler. At this stage, grab sampling is the most reliable method for field monitoring; nevertheless, passive sampler is a useful sampling tool but the method requires more research to ensure that the information obtained can be interpreted appropriately. Although alkylphenols and phthalates were detected at higher concentrations in the wastewater samples as compared to natural hormones, the environmental risk may be negligible as their estrogenic potencies are several orders of magnitude lower than that of the natural estrogens. In most wastewater samples, the natural estrogens contributed to 60% or more of the EEq value. Removal efficacy of most estrogenic and xenoestrogenic compounds from the conventional activated sludge or biological nutrient removal (BNR) WWTPs monitored in this study was in the range of 80-> 99%. The efficiency of the WWTPs in removing estrogenic activity was > 95%. The EEqs of the E-Screen and those calculated from the results of extensive chemical analyses using the estradiol equivalency factors were comparable for most of the WWTPs samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app