Add like
Add dislike
Add to saved papers

A 3-D dielectrophoretic filter chip.

Electrophoresis 2007 April
The paper presents a 3-D filter chip employing both mechanical and dielectrophoretic (DEP) filtration, and its corresponding microfabrication techniques. The device structure is similar to a classical capacitor: two planar electrodes, made from a stainless steel mesh, and bonded on both sides of a glass frame filled with round silica beads. The solution with the suspension of particles flows through both the mesh-electrodes and silica beads filter. The top stainless steel mesh (with openings of 60 mum and wires of 30 mum-thickness) provides the first stage of filtration based on mechanical trapping. A second level of filtration is based on DEP by using the nonuniformities of the electric field generated in the capacitor due to the nonuniformities of the dielectric medium. The filter can work also with DC and AC electric fields. The device was tested with yeast cells (Saccharomyces cerevisae) and achieved a maximal trapping efficiency of 75% at an applied AC voltage of 200 V and a flow rate of 0.1 mL/min, from an initial concentration of cells of 5 x 10(5) cells/mL. When the applied frequency was varieted in the range between 20 and 200 kHz, a minimal value of capture efficiency (3%) was notticed at 50 kHz, when yeast cells exhibit negative DEP and the cells are repelled in the space between the beads.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app