JOURNAL ARTICLE

Transgenic expression of inclusion body myopathy associated mutant p97/VCP causes weakness and ubiquitinated protein inclusions in mice

Conrad C Weihl, Sara E Miller, Phyllis I Hanson, Alan Pestronk
Human Molecular Genetics 2007 April 15, 16 (8): 919-28
17329348
Mutations in p97/VCP cause the autosomal-dominant, inherited syndrome inclusion body myopathy (IBM) associated with Paget's disease of the bone and frontotemporal dementia (IBMPFD) (Watts, G.D., Wymer, J., Kovach, M.J., Mehta, S.G., Mumm, S., Darvish, D., Pestronk, A., Whyte, M.P. and Kimonis, V.E. (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. p97/VCP is a multi-functional protein with a role in the ubiquitin-proteasome system (UPS) (Wang, Q., Song, C. and Li, C.C. (2004) Molecular perspectives on p97-VCP: progress in understanding its structure and diverse biological functions. To understand how mutations in this protein lead to a myopathy, we generated several lines of transgenic mice expressing p97/VCP-WT (TgVCP-WT) or the most common IBMPFD mutant, p97/VCP R155H (TgVCP-RH), under a muscle-specific promoter. TgVCP-RH animals, but not controls, became progressively weaker in a dose-dependent manner starting at 6 months of age. Abnormal muscle pathology, which included coarse internal architecture, vacuolation and disorganized membrane morphology with reduced caveolin-3 expression at the sarcolemma developed coincident with the onset of weakness. These changes were not associated with alterations in sarcolemmal integrity as measured by muscle fiber uptake of Evan's blue dye. Even before animals displayed measurable weakness, there was an increase in ubiquitin-containing protein inclusions and high-molecular-weight ubiquitinated proteins, markers of UPS dysfunction. We suggest that this early and persistent increase in ubiquitinated proteins induced by IBMPFD mutations in p97/VCP may ultimately lead to animal weakness and the observed muscle pathology. TgVCP-RH animals will be a valuable tool for understanding the pathogenesis of IBM and the role of the UPS in skeletal muscle.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
17329348
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"