JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Over-expression GbERF2 transcription factor in tobacco enhances brown spots disease resistance by activating expression of downstream genes.

Gene 2007 April 16
ERF transcription factors can bind GCC boxes or non-GCC cis elements to regulate biotic and abiotic stress responses. Here, we report that an ERF transcription factor gene (GbERF2) was cloned by suppression subtraction hybridization from sea-island cotton after Verticillium dahliae attack. The GbERF2 cDNA has a total length of 1143 bp with an open reading frame of 597 bp. The genomic sequence of GbERF2 contains an intron of 515 bp. The gene encodes a predicated polypeptide of 198 amino acids with a molecular weight of 22.5 kDa and a calculated pI of 9.82. The GbERF2 protein has a highly conserved ERF domain while the nucleotide and amino acid sequences have low homology with other ERF plant proteins. An RNA blot revealed that GbERF2 is constitutively expressed in different tissues, but is higher in the leaves. High levels of GbERF2 transcripts rapidly accumulated when the plants were exposed to exogenous ethylene treatment and V. dahliae infection, while there was only a slight accumulation in response to salt, cold, drought and water stresses. In contrast, GbERF2 transcripts declined in response to exogenous abscisic acid (ABA) treatment. GbERF2 transgenic tobacco plants constitutively accumulated higher levels of pathogenesis-related gene transcripts, such as PR-1b, PR2 and PR4. The resistance of transgenic tobacco to fungal infection by Alternaria longipes was enhanced. However, the resistance to bacterial infection by Pseudomonas syringae pv. tabaci was not improved. These results show that GbERF2 plays an important role in response to ethylene stress and fungal attack in cotton.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app