JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Docetaxel-induced apoptosis of human melanoma is mediated by activation of c-Jun NH2-terminal kinase and inhibited by the mitogen-activated protein kinase extracellular signal-regulated kinase 1/2 pathway.

Clinical Cancer Research 2007 Februrary 16
PURPOSE: Our studies have shown variable sensitivity of cultured melanoma cells to docetaxel. To better understand this response, we studied the role of signal transduction pathways in modulating docetaxel-induced melanoma killing.

EXPERIMENTAL DESIGN: Involvement of c-Jun NH(2)-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase, and Akt signaling was studied by evaluating their extent of activation in melanoma cells after treatment with docetaxel. The effect of their activation on docetaxel-induced apoptosis was assessed using biochemical inhibitors of the pathways and Western blot analysis of proteins involved.

RESULTS: Docetaxel induced activation of both JNK and ERK1/2 but not p38 mitogen-activated protein kinase or Akt kinases. Apoptosis was dependent on activation of JNK and mediated through activation of caspase-2 and caspase-dependent changes in Bax and Bak. The levels of activated JNK in individual lines showed a close correlation with the levels of apoptosis. In contrast, activation of ERK1/2 by docetaxel inhibited apoptosis and the levels of activation in individual lines were inversely correlated to the degree of apoptosis. Studies on the Bcl-2 family proteins seemed to reflect changes induced by activation of JNK and ERK1/2 pathways. Docetaxel-induced JNK activation was required for Bcl-2 phosphorylation as well as caspase-2-dependent activation of Bax and Bak and subsequent mitochondrial release of apoptosis-inducing factor and cytochrome c. In contrast, activation of ERK1/2 resulted in degradation of BH3-only protein Bim and phosphorylation of Bad.

CONCLUSIONS: These studies provide further insights into sensitivity of melanoma cells to taxanes and provide a basis for the current rationale of combining taxanes with inhibitors of the Raf-ERK1/2 pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app