Transforming growth factor-beta receptor type I-dependent fibrogenic gene program is mediated via activation of Smad1 and ERK1/2 pathways

Jaspreet Pannu, Sashidhar Nakerakanti, Edwin Smith, Peter ten Dijke, Maria Trojanowska
Journal of Biological Chemistry 2007 April 6, 282 (14): 10405-13
The transforming growth factor (TGF)-beta/Smad3 signaling pathway is considered a central mediator of pathological organ fibrosis; however, contribution of Smad2/3-independent TGF-beta signaling has not been fully explored. The present study utilized previously a described model of scleroderma (SSc) fibrosis based on forced expression of the TGF-betaRI (ALK5) (Pannu, J., Gardner, H., Shearstone, J. R., Smith, E., and Trojanowska, M. (2006) Arthritis Rheum. 54, 3011-3021). This study was aimed at determining the molecular mechanisms underlying the profibrotic program in this model. We demonstrate that the TGF-betaRI-dependent up-regulation of collagen and CCN2 (CTGF) does not involve Smad2/3 activation but is mediated by ALK1/Smad1 and ERK1/2 pathways. The following findings support this conclusion: (i) Smad2 and -3 were not phosphorylated in response to TGF-betaRI, (ii) a TGF-betaRI mutant defective in Smad2/3 activation, ALK5(3A), potently stimulated collagen production, (iii) elevation of TGF-betaRI triggered sustained association of ALK5 with ALK1 and high levels of Smad1 phosphorylation, (iv) blockade of Smad1 via small interfering RNA abrogated collagen and CCN2 up-regulation in this model, (v) elevated TGF-betaRI led to a prolonged activation of ERK1/2, (vi) the pharmacologic inhibitor of ERK1/2 inhibited Smad1 phosphorylation and abrogated profibrotic effects of elevated TGFbeta-RI. Additional experiments demonstrated that a GC-rich response element located -6 to -16 (upstream of the transcription start site) in the CCN2 promoter mediated Smad1-dependent increased promoter activity in this model. This element was shown previously to mediate up-regulation of the CCN2 promoter in SSc fibroblasts. In conclusion, this study defines a novel ALK1/Smad1- and ERK1/2-dependent, Smad3-independent mode of TGF-beta signaling that may operate during chronic stages of fibrosis in SSc.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"