JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Dopaminergic regulation of inhibitory and excitatory transmission in the basolateral amygdala-prefrontal cortical pathway.

Journal of Neuroscience 2007 Februrary 22
Projections from the basolateral amygdala (BLA) and dopamine (DA) input from the ventral tegmental area (VTA) converge in the medial prefrontal cortex (mPFC), forming a neural circuit implicated in certain cognitive and emotional processes. However, the role that DA plays in modulating activity in the BLA-mPFC pathway is unknown. The present study investigated the mechanisms by which DA modulates BLA-evoked changes in mPFC neural activity, using extracellular single-unit recordings in urethane-anesthetized rats. BLA stimulation evoked two distinct types of responses in separate populations of mPFC neurons: monosynaptic, excitatory responses and, more commonly, inhibition of spontaneous firing. Stimulation of the VTA or local iontophoretic application of DA attenuated BLA-evoked inhibition of PFC neuron firing. Administration of selective DA receptor agonists revealed that these effects were mediated by D2 and D4 (but not D1) receptors. In addition, VTA stimulation or DA application attenuated BLA-evoked firing of a separate population of mPFC neurons in a frequency-dependent manner; firing evoked by higher-frequency stimulation of the BLA was less inhibited than that evoked by single-pulse stimulation. Attenuation of BLA-evoked firing was also induced by of D1 (but not D2 or D4) receptor agonists. These data indicate that dissociable DA receptor mechanisms regulate the balance of excitatory and inhibitory transmission in BLA-mPFC circuits, biasing toward an increase in the excitatory influence that the BLA exerts over populations of mPFC neurons. These findings may have important implications for understanding the pathophysiology underlying emotional and cognitive disturbances present in disorders such as depression and drug addiction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app