JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines.

Micro-RNAs are small noncoding RNAs, which diminish the stability and/or translation of mRNAs. This study examined whether miR-206, previously shown to be elevated in estrogen receptor (ER)alpha-negative breast cancer, regulates the expression of ERalpha. Two putative miR-206 sites, (hERalpha1 and hERalpha2), were found in silico within the 3'-untranslated region of human ERalpha mRNA. Transfection of MCF-7 cells with pre-miR-206 or 2'-O-methyl antagomiR-206 specifically decreased or increased, respectively, ERalpha mRNA levels. Overexpression of pre-miR-206 reduced ERalpha and beta-actin protein levels, with no effect on ERbeta, E-cadherin, or glyceraldehyde-3-phosphate dehydrogenase. Reporter constructs containing the hERalpha1 or hERalpha2 binding sites inserted into the 3'-untranslated region of the luciferase mRNA conferred a 1.6- and 2.2-fold repression of luciferase activity, respectively, in HeLa cells. Both miR-206 sites responded accordingly to exogenous hsa-pre-miR-206 and 2'-O-methyl antagomiR-206, and both sites were rendered inactive by mutations that disrupted hybridization to the 5'-seed of miR-206. A C-->T single nucleotide polymorphism in the hERalpha1 site increased repression of luciferase activity to approximately 3.3-fold in HeLa cells. MiR-206 levels were higher in ERalpha-negative MB-MDA-231 cells than ERalpha-positive MCF-7 cells, but only the ERalpha1 site mediated significantly more repression in reporter constructs. MiR-206 expression was strongly inhibited by ERalpha agonists, but not by an ERbeta agonist or progesterone, indicating a mutually inhibitory feedback loop. These findings provide the first evidence for the posttranscriptional regulation of ERalpha by a micro-RNA in the context of breast cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app